A Fuzzy based Classification Approach for Efficient Fake and Real Fingerprint Classification with Intelligent Feature Selection

نویسندگان

  • V. SASIKALA
  • LAKSHMI PRABHA
چکیده

Fake and real fingerprint classification has become an attractive research area in the last decade. A number of research works have been carried out to classify fake and real fingerprints. But, most of the existing techniques did not utilize swarm intelligence techniques in their fingerprint classification system. Swarm intelligence has been widely used in various applications due to its robustness and potential in solving a complex optimization problem. This paper aims to develop a new and efficient fingerprint classification approach which overcomes the limitations of the existing classification approaches based on swarm intelligence and fuzzy based neural network techniques. The proposed classification methodology comprises of four steps, namely image preprocessing, feature extraction, feature selection and classification. This work uses efficient min-max normalization and median filtering for preprocessing, and multiple static features are extracted from Gabor filtering. Then, from the multiple static features obtained from 2D Gabor filtering, best features are selected using Artificial Bee Colony (ABC) optimization based on certain fitness values. This optimization based feature selection selects only the optimal set of features which is used for classification. This would lessen the complexity and the time taken by the classifier. This approach uses Fuzzy Feed Forward Neural Network (FFFNN) for classification and its performance is compared with the SVM classifier. The performance and evaluations is performed for real and fake fingerprint images obtained from LivDet2015 database. It shows that proposed work provides better results in terms of sensitivity, specificity, and precision and classification accuracy. Key-Words: Fake and real Fingerprint classification, multiple static features, normalization, median filtering, Gabor filtering, Artificial Bee Colony (ABC) optimization, Fuzzy Feed Forward Neural network (FFFNN)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016